Local Lyapunov Exponents : Predictability depends on where you are
نویسندگان
چکیده
The dominant Lyapunov exponent of a dynamical system measures the average rate at which nearby trajectories of a system diverge. Even though a positive exponent provides evidence for chaotic dynamics and upredictability, there may predictability of the time series over some finite time periods. In this paper one version of a local Lyapunov exponent is defined for a dynamic system perturbed by noise. These local Lyapunov exponents are used to detect the parts of the time series that may be more predictable than others. An examination of the fluctuations of the local Lyapunov exponents about the average exponent may provide important information in understanding the heterogeneity of a system. We will discuss the theoretical properties of these local exponents and propose a method of estimating these quantities using nonparametric regression. Also we will present an application of local exponents for interpreting surface pressure data.
منابع مشابه
Perturbations in Chaotic Dynarnical Systems
In ensemble predictions, particularly in numerical weather forecasts, the true initial errors are usually not known, and can be optimally represented by an ensemble of perturbations. Thus the growth rate and predictability of an ensemble of perturbations have direct impact on the quality and predictability of an ensemble forecast. In this paper, local metric entropy (LME) is introduced and used...
متن کاملEstimating Lyapunov Exponents in Chaotic Time Series with Locally Weighted Regression
Nonlinear dynamical systems often exhibit chaos, which is characterized by sensitive dependence on initial values or more precisely by a positive Lyapunov exponent. Recognizing and quantifying chaos in time series represents an important step toward understanding the nature of random behavior and revealing the extent to which short-term forecasts may be improved. We will focus on the statistica...
متن کاملEstimating Lyapunov Exponents Inchaotic Time Series with Locallyweighted
Nonlinear dynamical systems often exhibit chaos, which is characterized by sensitive dependence on initial values or more precisely by a positive Lyapunov exponent. Recognizing and quantifying chaos in time series represents an important step toward understanding the nature of random behavior and revealing the extent to which short-term forecasts may be improved. We will focus on the statistica...
متن کاملOn finite-size Lyapunov exponents in multiscale systems On finite-size Lyapunov exponents in multiscale systems
We study the effect of regime switches on finite size Lyapunov exponents (FSLEs) in determining the error growth rates and predictability of multiscale systems. We consider a dynamical system involving slow and fast regimes and switches between them. The surprising result is that due to the presence of regimes the error growth rate can be a non-monotonic function of initial error amplitude. In ...
متن کاملLocalized Lyapunov exponents and the prediction of predictability
Every forecast should include an estimate of its likely accuracy, a current measure of predictability. Two distinct types of localized Lyapunov exponents based on infinitesimal uncertainty dynamics are investigated to reflect this predictability. Regions of high predictability within which any initial uncertainty will decrease are proven to exist in two common chaotic systems; potential implica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995